

Funciones y módulos

● Objetivos:
– Recordatorio de funciones y módulos
– Sobre return
– Algunos programas de ejemplo:

● El número secreto
● Cachipún
● El ahorcado

Recordatorio: las funciones

● Son subprogramas: tienen entradas (argumentos) y generan una
salida (valor retornado)

● Nos permiten reutilizar código
● Programación estructurada:

– Ejecución de código sólo en algunas ocasiones: alternativas
● Todo lo que sería if-elif-else

– Repetir código de forma consecutiva: repeticiones
● Todo lo que sería for y while

– Reutilizar código en distintos lugares: funciones
● Se definen con def, pero se invocan por su nombre

Recordatorio: funciones ya vistas

● int(x): recibe un valor e intenta
convertirlo en un número entero
(tipo int)

● float(x): recibe un valor e
intenta convertirlo en un número
decimal (tipo float)

● str(x): recibe un valor e intenta
convertirlo en un texto (tipo str)

● input(): entrega un texto desde
la entrada estándar (ej. el teclado)

● print(x1, x2, …)

● round(x,d): redondea el
número x, dejando sólo d
decimales

● abs(x): obtiene el valor absoluto
de x

● max(x1, x2, …): retorna el
número más grande (el máximo)
de los números x1, x2, …, etc

● min(x1, x2, …): retorna el
número más pequeño (el mínimo)
de los números x1, x2, …, etc

Recordatorio: nuevas funciones

Módulo: math
● Modulo con funciones

matemáticas
● math.sqrt(x): obtiene la

raíz cuadrada de x
● Otras funciones (no canon)

– math.log
– math.exp
– math.cos
– math.sin

Módulo: random
● Módulo con funciones que

generan números aleatorios
● random.randint(a,b):

genera un entero aleatorio
entre los enteros a y b,
extremos incluidos

● random.random(): genera
un flotante entre 0 y 1,
aleatorio

Recordatorio: funciones propias

Las funciones se definen utilizando la instrucción def de la siguiente
manera:

def nombre_de_la_función(argumento1, argumento2, …):
 bloque de instrucciones
 (o mini procedimiento)
 que realiza lo que la
 función debe hacer
 return resultado

Las variables argumento1, argumento2, etc, se definen cada vez que se
invoca a la función. La instrucción return permite indicar qué valor
retornará la función.

def factorial(n):
 resp = 1
 for k in range(2, n+1):
 resp = resp * k
 return resp

def combinacion(n, r):
 numer = factorial(n)
 denom = factorial(r) * factorial(n-r)
 return numer / denom

print(combinacion(8,2))
print(combinacion(11,3))

Recordatorio: funciones de funciones

Recordatorio: módulos propios

¿Cómo creamos un módulo?
Simplemente tenemos que guardar nuestro programa con su
extensión .py.

¿Cómo cargamos un módulo desde otro?
Escribiendo import mi_modulo, si es que nuestro módulo se llamó
mi_modulo.py.

¿Cómo usamos una función de un módulo?
Si la función se llama mi_funcion() y está en mi_modulo.py, entonces
podemos llamar a mi_funcion escribiendo mi_modulo.mi_funcion()
después de haber hecho import mi_modulo.

Sobre
return

Más sobre return
● Permite indicar qué valor será retornado
● Una vez que return se ejecuta, la función se cierra y el valor se

devuelve al contexto que llama
– ¿Si hay return dentro de if? No importa, se acaba el if
– ¿Si hay return dentro de for? No importa, se acaba el for
– ¿Si hay return dentro de while? No importa, se acaba el while

● La instrucción return puede ir vacía, o sea, sin valor adjunto
– Escribir return a secas es equivalente a escribir return None

● Si la función no lleva return, se retorna None

Pregunta tipo control

Considere el siguiente programa en Python. ¿Qué es lo que imprime?

def misterio(z):
 if z < 0:
 return -1
 elif z > 0:
 return 1
 elif z == "hola":
 return "mundo"

x = misterio(17)
print(x)

Pregunta tipo control

Considere el siguiente programa en Python. ¿Qué es lo que imprime?

def misterio(z):
 if z < 0:
 return -1
 elif z > 0:
 return 1
 elif z == "hola":
 return "mundo"

x = misterio(-5)
print(x)

Pregunta tipo control

Considere el siguiente programa en Python. ¿Qué es lo que imprime?

def misterio(z):
 if z < 0:
 return -1
 elif z > 0:
 return 1
 elif z == "hola":
 return "mundo"

x = misterio(0)
print(x)

Pregunta tipo control

Considere el siguiente programa en Python. ¿Qué es lo que imprime?

def misterio(z):
 if z < 0:
 return -1
 elif z > 0:
 return 1
 elif z == "hola":
 return "mundo"

x = misterio("hola")
print(x)

Pregunta tipo control

Considere el siguiente programa en Python. ¿Qué es lo que imprime?

def misterio(u,v):
 for i in range(v):
 if i==u:
 return u
 else:
 return v

x = misterio(5,7)
print(x)

Programando

Programando

Veamos aplicaciones prácticas de funciones y módulos para escribir
programas (juegos)

Juegos a implementar:
● Adivine el Número Secreto
● El Cachipún
● El Ahorcado

